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Abstract: Gaussian integers is a set of complex integers a + bi where both a and b are integers. Long division still 

the effective method to test the divisibility of a Gaussian integer by another Gaussian integer. In this paper, instead 

of using long division, we used the real and imaginary parts to test if a Gaussian integer is divisible by another 

Gaussian integer.  General formulas are also developed in this study from which these tests may be derived. 
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I.   INTRODUCTION 

Divisibility is introductory to the theory of numbers. The ancient Greeks explored topics like divisibility and tended to 

treat numbers with a near-mystical reverence, and attributed a great deal of importance and meanings to their findings 

[11]. Divisibility testing is an important concept required in application like cryptosystems and the most trivial way to 

perform divisibility testing is direct division, where the integer under test (dividend) is divided by the potential integer 

(divisor) to check if the remainder is zero [10].  

Johann Carl Friedrich Gauss (1777-1855) and Leonhard Euler (1707-1783) both proposed extensions of integers that used 

irrational numbers that they were able to use to attempt to develop elegant proofs for Fermat’s Last Theorem [6]. In 1995, 

Fermat’s Last Theorem was proved by Andrew Wiles. A set of integers is extended by including additional values. The 

standard integers are the whole numbers together with the additive inverses of the natural numbers [12]. The extended 

integers include the standard integers and additional values such as i, 5i etc [8]. In other words, the extended integers 

include all numbers of the form a + bi where a and b are real numbers and i
2 

= -1. This set of extended integers forms the 

set of Gaussian integers, named after the Mathematician Johann Carl Friedrich Gauss. In this paper, we define the norm of 

a Gaussian integer as N(a+bi)=(a+bi)(a-bi). We denote Z[i] as the set of Gaussian integers. 

The interesting idea behind Gaussian integers is that any theorem which is true for all Gaussian integers is also true for all 

integers since integers are Gaussian integers wherein b = 0. Before Gauss, extending the idea of fundamental theorem of 

Arithmetic for Gaussian integers was probably not interesting to Mathematicians because it is so clearly true in the case of 

integers. Gauss developed the properties of factorization for Gaussian integers and proved the uniqueness of the 

factorization of a Gaussian integer into prime Gaussian primes. The Euclidean Algorithm and Bezout’s identity for 

Gaussian integers were developed because these were required in proving the unique factorization of complex integers 

[5,6,7,8].  

II.   MAIN RESULTS 

2.1 Extensions of Divisibility Properties: 

Table I shows the divisibility properties for integers with their corresponding properties extended in the set of Gaussian 

integers. The first column contained some divisibility properties for integers and the second column shows the extensions 

of divisibility properties of integers in the set of Gaussian integers.  
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TABLE: I 

Basic Properties for Divisibility of Integers Extension in Gaussian Integers 

1. For any integer a, 1|a and a|a. 1. For any Gaussian integer α,  1|α and α|α. 

2. If a|b and b≠0, then |a|≤|b|. 2. If α│β and β ≠ 0, then │α│≤│β│. 

3. If a│b and b│c, then a│c. 3. If α│β and β│γ, then α│γ. 

4. If a│b and a ≠ 0, then 







a

b
│b. 4. If α│β and α ≠ 0, then 









α

β
│β. 

5. If ab│c, then a│c. 5. If α·β│γ, then α│γ. 

2.2 Specific Divisibility Test for Gaussian Integers: 

Let us start by presenting specific divisibility test for Gaussian integers. Suppose a Gaussian integer α is an integer that is 

the imaginary part of α is zero. To determine if α divides any Gaussian integer β is synonymous to verifying if α divides 

both the real and imaginary parts of β. 

Now suppose α is a pure Gaussian integer, that is, none of its part is zero. It is easy to verify if α┼β (i.e. α does not divide 

β) means this may simply equal in verifying divisibility of their norm. In other words, if N(α)┼N(β), then α┼β. Next 

suppose that α is a composite Gaussian integer whose norm is an even integer, then α is divisible by 1+i. The presence of 

1+i as a factor in an ordinary rational integer indicates evenness, and divisibility of a Gaussian integer α by 1+i is 

equivalent to divisibility of N(α) by 2 [4].  

Theorem 2.2.1: Divisibility Test for 1 + i 

If the norm of α is an even integers, then (1 + i)│α. 

This statement implies that any complex integer whose norm is even integer is a composite complex integer and is 

divisible by 1+i. For instance, (1+i)│(2+4i) since N(2 + 4i) = 20 and 20 is an even integer. The factors of 2+4i are 1+i and 

3+i. To explore and create a divisibility test for a particular Gaussian integer, by taking a clue from the Sieve of 

Erathostenes, Loy (1999) listed a few complex integers with norm less than 100 which are complex prime and this list 

included some prime integers. In this paper those prime integers were eliminated and only the pure Gaussian primes were 

considered. These numbers are 1+i, 2+i, 3+2i, 4+i, 5+2i, 5+4i, 7+2i, 6+5i, 8+3i, 8+5i, and 9+4i. The divisibility test for 

the Gaussian integer 1+i has already been discussed. Divisibility tests for the remaining complex integers were explored 

through long division and were generalized and supplied with illustrations.  

The list of prime complex integer of Loy (1999) has a restriction. He restricted the list to complex integers whose real part 

is greater than the coefficient of the imaginary part. In this paper, we included the Gaussian primes whose real part is less 

than the coefficient of the imaginary part in addition to the mentioned prime complex integers. Now the list of prime 

complex integers to be considered are 1+i, 2+i, 1+2i, 3+2i, 2+3i, 4+i, 1+4i, 5+2i, 2+5i, 5+4i, 4+5i, 7+2i, 2+7i, 6+5i, 5+6i, 

8+3i, 3+8i, 8+5i, 5+8i, 9+4i, 4+9i. The conjugate of these Gaussian primes are also prime but they are not included in the 

list for the reason that each is the product of one prime listed and a unit. For example, the Gaussian integer with norm 13 

are 2+3i, –2+3i,  2–3i,  –2–3i, 3+2i, –3+2i, 3–2i, and –3–2i, but whatever divisibility test applicable to 3+2i is also 

applicable to 2–3i, –3–2i, and –2+3i, since 3+2i=i(2–3i)=(–1)(–3–2i)=(–i)(–2+3i). Similarly, whatever divisibility test 

applicable for the Gaussian integer 2+3i is also applicable to Gaussian integers –2–3i, –3+2i, and 3–2i since 2+3i=(–1)(–

2– 3i)=i(3–2i)= (–i)(–3+2i). The conjugate of 3+2i is 3–2i=i(2+3i). Therefore the researcher omitted those Gaussian 

primes whose parts are not both positive and developed divisibility tests only for Gaussian integers whose real and 

imaginary parts are positive. The theorem below generalizes the above example. 

Theorem 2.2.2 

Let δ{1,-1,i,-i}. If α│β then αδ │β. 

For example, if (3+i)│(2+4i), then (3+i)(–i)│(2+4i). The conclusion is true since 2+4i=(–1+i)(1–3i)=(–1+i)(3+i)(–i). 

Let α=a+bi and (2+i)│α. Now (2+i)│α is true if there exists a Gaussian integer say φ such that α=(2+i)φ. Dividing both 

sides of this equation by 2+i, yields 
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and φ is a Gaussian integer if 2a+b and 2b–a are both divisible by 5. Note that, 5 divides both 2a+b and 2b–a if b is 

replace by 3a or when a is replace by 2b. The statement below generalizes the divisibility test and formalizes the concept. 

Theorem 2.2.3: Divisibility Test for 2 + i 

If 5│(b-3a) or 5│(a-2b), then (2+i)│(a+bi). 

Let us apply this test to verify divisibility. To verify if (2+i)│(2+6i), take a=2 and b=6, and since 5│(2–2(6)), therefore 

(2+i)│(2+6i). Now to determine the other factor of 2+6i, recall that 2+6i = (2+i)[(2m+b)–mi]. The value of m depends on      

a–2b, since 5m=a–2b=2–2(6)=–10=(–2)5, so m=–2. This yields (2m+b)–mi=[2(–2)+6]–(–2)i=2+2i. Thus 

2+6i=(2+i)(2+2i).  

To derive a divisibility test for the Gaussian prime 1+2i, observe that any divisibility test for the Gaussian prime 1+2i 

would be applicable to the Gaussian integer 2–i which is the complex conjugate of the Gaussian prime 2+i. So the process 

will be the same by interchanging the real and coefficient of the imaginary part of the Gaussian integer to be tested. So the 

statement below formalizes the discussion. 

Theorem 2.2.4: Divisibility Test for 1 + 2i 

 If 5│(a–3b) or 5│(b–2a), then (1+2i)│(a+bi). 

Proof. The statement (1+2i)│(a+bi) means that there exists a Gaussian integer φ such that a+bi=(1+2i)φ. Dividing both 

sides of this equation by 1+2i yields 




i

 bia

21
. Now 

5

)2()2(

21

ibaba

i

bia 





  

From the hypotheses 

 5│a – 3b  a – 3b = 5n for some nZ a = 5n + 3b  

or 

 5│b – 2a b – 2a = 5m for some mZ b = 5m + 2a 

Thus 

5

])35(2[]2)35[(

5

)2()2(

21

ibbnbbnibaba

i

bia 








  

    
5

)105()55( inbnb 
 inbnb )2()(   

or 

5

5)105(

5

)]25(2[)]25(2[

21

mimaiamaama

i

bia 








  

     mima  )2( .□ 

For example, let α=–1+18i. To verify if α is divisible by –2+i. Divisibility test for 1+2i may be used since by Theorem 

2.2.2, the divisibility test for –2+i is the same as the divisibility test for 1+2i since 1+2i = i(–2+i). Let a=–1 and b=18, 

now   –1–3(18)=–1–54=–55 and 5│(–55). Hence (–2+i)│(–1+18i).  
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Observe that in the hypotheses of the divisibility tests for 2+i and 1+2i, the sum of the coefficients of the second terms of 

the dividends is equivalent to their divisor. Following this process the following divisibility tests were obtained. 

Theorem 2.2.5: Divisibility Test for 3 + 2i 

If 13│(a–8b) or 13│(b–5a), then (3+2i)│(a+bi). 

For example, for the Gaussian integer 8+14i, a=8 and b=14. Now b–5a=14–5(8)=–26 and 13│(–26), therefore 

(3+2i)│(8+14i). 

2.3 Generalized Divisibility Tests 

Since the divisor of the hypothesis of every divisibility tests is the norm of the particular Gaussian prime and equivalent to 

the sum of the second terms of the two dividends, so this procedure can be generalized by replacing the particular 

Gaussian prime. Now let β=c+di be a particular Gaussian prime. In the preceding divisibility test, the hypothesis is given 

by 97│(a–75b) or 97│(b–22a). Note that 97=22+75, but this relationship has nothing to do with the Gaussian integer to 

be tested, it involves the integer parts of the divisor. For a particular divisor, say the Gaussian prime 9+4i, 

N(9+4i)=97=22+75 and 22=
4

88
=

4

997 
. Similarly 75 =

4

300
=

4

9)14(97

4

9)3(97 



. Now let c=9 and d=4, so                                        

N(c+di)=
d

cdicN  )(
+

d

cddicN  )1()(
.  

The following theorems formalize this discussion and generalize the divisibility test for any Gaussian integer. The 

divisibility tests for the remaining Gaussian integers whose norms are prime can be derived using the following theorems. 

Theorem 2.3.1   

Let α=a+bi and β=c+di where c>d. If 


d

ca )1(
Z and N(β)│ a

d

cN
b 




)(
 where N(β) is prime in Z, then β│α. 

Proof. β│α if there exists a Gaussian integer φ such that α = βφ. Since α=a+bi and β=c+di, then a+bi=(c+di)φ and 

dividing both sides of this equation by c di, yields 
22

)()(

dc

ibcadbdac

dic

bia









 . Next is to show that                  

φZ[i]. From the hypothesis 

N(β)│ a
d

cN
b 




)(
 nNa

d

cN
b 


 )(

)(



 for some n in Z 

a
d

cN
nNb 




)(
)(


 . 

d

acaNdnN
b




)()( 
 

Now replacing the value of b yields 

)(

)()()()(

βN

ic
d

acaNdnN
add

d

acaNdnN
ac
















 

















 






  

 

)(

)()(
)()(

βN

i
d

caacβNndcβNad
caaβNdnβNac

22








 
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  
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and 







 
 )(  

i
d
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cnand 







 
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Since 


d

ca )1(
Z. Therefore 







 


d

ca
cn

)1(
is also an integer. Hence φ is a Gaussian integer. □ 

For example, to derive a divisibility test for 9+4i, let c=9 and d=4. First is to verify if 
d

ca )1( 
 is an integer. Substituting 

c and d yields a
a

2
4

)19(



 which is an integer. Now N(9+4i)=97, so ab 




4

997
 = b–22a. Therefore the test can 

be stated as: If 97│(b – 22a), then (9+4i)│(a+bi). 

Theorem 2.3.2 

Let α=a+bi and β=c+di where c>d. If 


d

cb )1(
Z and N(β)│ b

d

cdN
a 




)1)((
 where N(β) is prime in Z, then 

β│α. 

Proof. β│α if there exists a Gaussian integer φ such that α=βφ. Since α=a+bi and β=c+di, then a+bi=(c+di)φ and 

dividing both sides of this equation by c+di, yields 
22
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
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
 . Next is to show that                 
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d
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
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Now replacing the value of a yields 
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


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Since 


d

cb )1(
Z. Therefore 







 


d

cb
bcnc

)1(
 is also an integer. Hence φ is a Gaussian integer. □ 

For example, to derive a divisibility test for 7+2i, let c=7 and d=2. First is to verify if 
d

cb )1( 
 is an integer. Substituting 

c and d yields b
b

3
2

)71(



 which is an integer. Now N(7+2i)=53, so ba 




2

753)12(
=a–30b. Therefore the 

test can be stated as: If 53│(a–30b), then (7+2i)│(a+bi). 

Theorems 2.3.1 and 2.3.2 can only be used to derive a divisibility test for any Gaussian integer c+di when c>d. In 

deriving a divisibility test for Gaussian integer c+di where c<d, use the following two theorems. Observed, however, that 

any divisibility tests where c>d are also the same with the divisibility tests for c<d by interchanging the roles of the real 

and imaginary parts of the Gaussian integers to be tested. Theorem 2.3.3 and Theorem 2.3.4 are alternative formulas to 

derive a divisibility test for any Gaussian integer.  

Theorem 2.3.3   

Let α=a+bi and β=c+di. If 


c

db )1(
Z and N(β)│ b

c

dN
a 




)(
 where N(β) is prime in Z, then β│α. 

Proof. Similar to the proof of Theorem 2.3.1. □ 

For example, to derive a divisibility test for 2+5i, let c=2 and d=5. First is to verify if 
c

db )1( 
 is an integer. Substituting 

c and d yields b
b

2
2

)15(



 which is an integer. Now N(2+5i)=29, so baba 12

2

529



 . Therefore the test 

can be stated as: If 29│(a–12b), then (2+5i)│(a+bi). 

Theorem 2.3.4 

Let α=a+bi and β=c+di. If 


c

da )1(
Z and N(β)│ a

c

dcN
b 




)1)((
 where N(β) is prime in Z, then β│α. 
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Proof. Similar to the proof of Theorem 2.3.2. □ 

For example, to derive a divisibility test for 1+10i, let c=1 and d=10. First is to verify if 
c

da )1( 
 is an integer. 

Substituting c and d yields a
a

9
1

)101(



 which is an integer. Now N(1+10i)=101,  

so abab 10
1

10)11(101



 . Therefore the test can be stated as: If 101│(b–10a), then (1+10i)│(a+bi). For 

instance, suppose a=22 and b=18. Because 101│(18–10(22)), that is 101│(–202), thus (1+10i)│(22+18i) and the factors 

of 22+18i are 1+10i and 2–2i. 

III.   CONCLUSION 

Mathematics is a growing discipline. This subject is a source of many remarkable results particularly in Number Theory. 

Using simple algebraic manipulations, this exploration has shown how divisibility properties for integers may be extended 

into the set of Gaussian integers. The divisibility of two Gaussian integers may now be easily tested without using long 

division involving Gaussian integers. Some of the results of this study can also be used in factoring Gaussian integers.  

It is verified that basic theorems on divisibility (found in most elementary number theory books) which are true for all 

integers are also true for all complex integers. Divisibility tests are derived based on divisibility theories for integers and 

the corresponding theories developed in this study. The coverage of number theory may be extended to include the study 

of Gaussian integers. 

The set of Gaussian integers is a source of many interesting properties in number theory and it has been the subject of 

numerous investigations. The complex integers can be used to derive formulas such as the formulas in finding primitive 

Pythagorean triples, most of which do not appear in any elementary number theory book. The following are further 

studies recommended for investigation: 

1. Divisibility properties and tests for Eisenstein integers and Kummer’s complex integers; 

2. Divisibility tests for Gaussian integers using the weighted sum; 

3. Extensions in modular functions for Gaussian integers. 
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